Emotional Norms for 524 French Personality-Trait Words

François Ric
Université de Bordeaux, EA 4139

Theodore Alexopoulos
Université Paris Descartes

Dominique Muller
Université Pierre Mendes-France at Grenoble

Benoîte Aubé
Université de Bordeaux, EA 4139

Authors’ Note: This research was supported by a grant of the Agence Nationale de la Recherche (ANR-2010-BLAN-1905-01). The second and third authors contributed equally to this article, authorship for these authors was randomly determined. Thanks to Mylène Inard, Kolsothy Kau, Aude Lugué, and Jade Sysaykeo for their help in data collection and coding. Correspondence concerning this article should be addressed to François Ric, Département de psychologie, Université de Bordeaux Segalen, 3rd place de la Victoire, 33076 Bordeaux CEDEX, France. Email: francois.ric@u-bordeaux2.fr

Word count: 3496 (main text: 3320; footnotes: 176)
Abstract

Newly measured rating norms provide a database of emotion-related dimensions for 524 French trait-words. Measures include valence, approach/avoidance tendencies associated with the trait, possessor- and other-relevance of the trait, and discrete emotions conveyed by the trait (i.e., anger, disgust, fear, happiness, and sadness). The normative data were obtained on 328 participants and revealed to be stable across samples and gender. These data go beyond a dimensional structure and consider more fine-grained descriptions such as the categorical emotions, as well as the perspective of the evaluator conveyed by the traits. They should thus be particularly useful for researchers interested in emotion or in the emotional dimension of cognition, action, or personality. The database is available as supplementary material.

Key words: Discrete emotion, Normative data, Trait words, Type of valence.
Emotional Norms for 524 French Personality-Trait Words

The last two decades have witnessed the growing importance of affective states in many areas of psychology. The study of affective states has led to the development and selection of material possessing an affective connotation: drawings, smells, pictures, movie excerpts, and words. Among these stimuli, words have been frequently used as they provide structurally simple stimuli of rich semantic meaning and variability. With the aim of providing ready-to-use experimental material, researchers have developed normative databases of the emotionality of words in English (Bradley & Lang, 1999) as well as in other languages, such as German (Kanske & Kotz, 2010; Võ, Jacobs & Conrad, 2006), Spanish (Redondo, Fraga, Padrón, & Comesana, 2007), Portuguese (Soares, Comesana, Pinheiro, Simões, & Frade, 2012), Finnish (Eilol & Havelka, 2010), and French (Bonin, Méot, Aubert, Malardier, Niedenthal, & Capelle-Toczek, 2003).

Yet, normative studies for French remain relatively infrequent (see Bonin et al., 2003; Syssau & Monnier, 2009), for a language that is currently spoken in many countries all around the world (e.g., Boies, Lee, Ashton, Pascal, & Nicol, 2001). Notably, with few exceptions (e.g., Briesemeister, Kuchinke, & Jacobs, 2011; Stevenson, Mikels, & James, 2007), most of the studies assess words’ emotionality through the measurement of word valence. Valence is undoubtedly a central dimension in emotion experience (e.g., Osgood & Suci, 1955; Russell, 1980; Smith & Ellsworth, 1985), but recent research indicates that it is not the sole, and sometimes not the most important, dimension of interest when examining the impact of affective stimuli. Indeed, other dimensions seem to better account for the cognitive and behavioral consequences of exposure to affective stimuli. Thus, in the present normative study, we turned our attention to three additional dimensions that have been found to account for the impact of affective stimuli, sometimes over and above valence: The categorical (or “basic”) emotion conveyed by the stimulus, the associated behavioral tendencies (i.e.,
Emotional norms for trait words - 4

approach vs. avoidance), and the expected consequences of the stimulus, as primarily relevant for the self vs. others. We briefly describe each of these dimensions and their relevance for psychology research on affect and evaluation.

Dimensions of Interest

Categorical emotions

The debate about the structure of emotion opposes two main positions. According to the dimensional view, emotions cannot be distinguished on the basis of their nature but on specific dimensions on which they vary. Typically, these dimensions include valence and arousal (e.g., Russell, 1980). This position is challenged by a categorical view of basic emotions that hypothesizes the existence of a small set of distinct and irreducible emotion processes (e.g., Panksepp, 1998; Plutchik, 1984). Although theorists differ in the number of basic emotions that should be considered, they generally include anger, disgust, fear, happiness, and sadness (e.g., Ekman, 1999; Izard, 2009; Oatley & Johnson-Laird, 1987; Plutchik, 1980; Tomkins, 1984).

The question of the structure of emotion experience is beyond the scope of this article. When measuring emotionality of stimuli, however, it appears useful to assess the categorical emotion they convey because it sometimes better accounts for the reactions to this stimulus than valence. For instance, forecast about ambiguous future events is better predicted by the certainty associated with the affective state currently experienced by the participants than by its valence (Lerner & Keltner, 2001). As a result, happy and angry participants (anger and happiness being associated with certainty appraisals) made similarly more optimistic predictions than fearful participants (fear being associated with uncertainty). In a similar vein, participants respond faster to emotional stimuli by an approach movement when it is associated with happiness and anger than when it is associated with fear and sadness (the
effect being reversed when participants responded by an avoidance movement, Alexopoulos & Ric, 2007). Other research on various areas of judgment, like risk estimation (DeSteno, Petty, Wegener, & Rucker, 2000; Keltner, Ellsworth, & Edwards, 1993), stereotyping (Bodenhausen, Sheppard, & Kramer, 1994; Tiedens & Linton, 2001), prejudice (Cottrell & Neuberg, 2005), persuasion (Moons & Mackie, 2007), and consumer decision-making (Han, Lerner, & Keltner, 2007) has revealed that the impact of negative emotions or stimuli can vary to a great extent depending on which specific emotion (e.g., anger vs. fear) the situation or the stimuli are eliciting. Thus, in the present study, we assessed the extent to which words conveyed anger, disgust, fear, happiness, and sadness.

Action Tendencies

There is a general agreement among researchers to define emotion as component processes (e.g., Keltner & Gross, 1999; Niedenthal, Krauth-Gruber, & Ric, 2006). Among these components, one seems to be of high importance for the organism’s well-being and survival: the ability to approach or avoid specific stimuli. This dimension can be conceived as referring to the motivational orientation component of emotion (e.g., Krieglmeyer, Deutsch, De Houwer, & De Raedt, 2010). Although this dimension is highly correlated with valence (e.g., Chen & Bargh, 1999; Krieglmeyer et al., 2010), research indicates that they should not be confounded. First, action tendencies are specifically related to categorical emotions in such a way that negative stimuli may have different motivational implications depending on the emotion they convey. For instance, whereas fear is associated with avoidance, anger is typically associated with approach (in order to remove obstacles in goal attainment; e.g., Carver & Harmon-Jones, 2009; Frijda, Kuipers, & ter Schure, 1989; Plutchik, 1984). Thus, the behavioral consequences should be different depending on whether the stimulus conveys fear or anger. In line with this view, recent studies (Alexopoulos & Ric, 2007) indicated that stimulus words associated with happiness or anger (both associated with
approach) are responded to faster by a movement implying arm flexion (i.e., an approach behavior; e.g., Cacioppo, Priester, & Bernston, 1993) than stimulus words associated with fear or sadness (both associated with avoidance).

Second, research indicates that the relationship between valence and action tendencies can be moderated by other factors, such as the perspective of the evaluator (Peeters, 1983; Wentura, Rothermund, & Bak, 2000). This dimension will be further presented in the next section.

All in all, these findings suggest that action tendencies in terms of approach and avoidance should not be considered as a direct response to valence, and thus cannot be equated with this dimension. Therefore, and given the importance of approach tendencies in motivated behavior, it appears important to evaluate this dimension independently from valence.

Possessor- vs. Other-Relevance

Trait words can be distinguished on whether, on the one hand, they have *unconditional* positive or negative implications for the possessor of the trait (e.g., intelligent, depressed) or, on the other hand, they have *unconditional* positive or negative implications for the person who is interacting with the trait holder (e.g., honest, cruel; Peeters, 1983; Wentura et al., 2000). People can rapidly distinguish whether trait words have mainly implications for the possessor of the trait, or for the person who is interacting with the possessor of the trait. In support of this, Wentura and Degner (2010) demonstrated that affective priming was more effective when the prime and the target were both possessor- or other-relevant than when they did not belong to the same category. This result suggests that aside from valence, affective stimuli also convey the type of relevance. Other research reveals that this dimension could also have important judgmental and behavioral consequences. For instance, Wentura and
colleagues (2000) have demonstrated that behavioral approach or avoidance are far more marked for traits having implications for the person who is interacting with the trait holder, and that reactions to other-relevant stimuli are better predictors of prejudice and discrimination towards specific outgroups (e.g., Turks for German participants; Degner & Wentura, 2011; Degner, Wentura, Gniewosz, & Noack, 2007). These findings thus indicate that possessor- vs. other-relevance of trait words is a dimension of great interest to further understand people’s reactions to emotional stimuli.

A Focus on Trait Words

In this study, we focused on trait words as they represent a homogenous, still very large, category of adjectives, the structure of which has been widely studied in previous research because of its implications in both personality description (e.g., Goldberg, 1990; for an analysis of the French personality lexicon, see Boies et al., 2001) and social judgment (e.g., Anderson, 1968). Trait words are indeed useful tools to convey information about others with potentially great consequences in real and symbolic interactions (e.g., person evaluation, expression of prejudice). As a result, they have been frequently used in experimental research both to induce evaluative or descriptive categorization (e.g., Higgins, Bargh, & Lombardi, 1985; Srull & Wyer, 1979; Wentura & Degner, 2010), and to measure impressions about a target (e.g., Willis & Todorov, 2006). Therefore, a normative study of the emotionality of trait words should be of great use for researchers interested in trait ascription as well as those interested in the judgmental and behavioral consequences of such trait ascriptions.

Method

Participants

Three hundred and forty eight undergraduate students enrolled in three different French universities received partial course credit or monetary compensation (10 euros) in
exchange for their participation in the study. The data from 20 participants were excluded from the sample because they were not French native speakers \((n = 19)\) or because of a high proportion of missing data (more than 20%; \(n = 1\)). Each University contributed approximately one third (Bordeaux, \(n = 110\); Paris Descartes, \(n = 110\); and Grenoble II, \(n = 108\)) to the sample of the remaining 328 participants (259 women and 69 men; mean age = 20.76). These were randomly assigned to one of the four questionnaire conditions. The full list of words is provided as supplementary material and can also be downloaded at the following address: http://webcom.upmf-grenoble.fr/LIP/Share/EmotionalNorms.

Procedure

Participants were run in groups of up to 10, with the restriction that each type of questionnaire was filled in each session. The completion lasted from about 45 min. to 1 h 15 min, depending on the questionnaire participants received. The questionnaire contained 524 personality-traits words selected on the basis of previous research (Anderson, 1968; Boies et al., 2001; Wentura et al., 2000) and brainstorming. We excluded from our list the traits that were highly infrequent as well as redundant. The 524 remaining words were presented to the participants under the form of a printed list in one of five randomly-determined orders. Participants were asked to rate the 524 personality-trait words on one of the four dimensions.

A first group of participants \((n = 80)\) rated the valence of the words (VAL). Participants had to indicate to what extent each trait was positive or negative. They answered by circling the appropriate number on a 7-point scale \((-3 =\) extremely negative; \(+3 =\) extremely positive\), with 0 indicating that the word was neither positive nor negative. A second group \((n = 89)\) rated the consequences for the possessor of the trait (PCONS) and the consequences for others interacting with the trait holder (OCONS). Concerning the consequences for the trait holder (PCONS), participants indicated to what extent possessing
such a trait would have consequences for the person who possesses it. Concerning the consequences for others (OCONS), they indicated to what extent possessing the trait would have consequences for people encountering and interacting with the trait holder. They gave their estimations on two 7-point scales (1 = low consequences; 7 = high consequences). The third group (n = 80) assessed the behavioral tendencies toward a person possessing the trait. Participants indicated to what extent they would avoid (-3 = strong avoidance) or approach (+3 = strong approach) a person possessing the trait, with 0 indicating no specific behavioral tendency. The fourth group (n = 79) evaluated the categorical emotions conveyed by the traits. For each trait, participants indicated to what extent it conveyed anger, disgust, fear, happiness, and sadness on five 7-point scales (1 = does not convey this emotion at all; 7 = strongly conveys this emotion). When the questionnaire was completed, the experimenter answered the participants’ questions and thanked them for their participation.

Results

Response rate was 99.4 % (> 89.8% for all traits and all dimensions) and suggests that the traits-words were known to the participants and that the dimensions of evaluation were meaningful. Table 1 presents an illustration of the measures, as well as trait-words frequencies in books and in movies’ subtitles (taken from LEXIQUE 3.80; http://www.lexique.org; New, Brysbaert, Veronis, & Pallier, 2007; New, Pallier, Brysbaert, & Ferrand, 2004; New, Pallier, Ferrand, & Matos, 2001), for the six first and last alpha-ordered trait-words as they appear in the database.

Stability of the Evaluations

Stability of evaluations was assessed by computing, for each dimension, the mean correlations between trait-word evaluations across the three university samples and across gender. The evaluations were quite stable for all the dimensions across university samples:
valence (mean $r = .98$), action tendencies (mean $r = .97$); consequences for the trait holder (mean $r = .80$), consequences for others (mean $r = .91$), and emotions (all mean $rs > .91$). High consistencies were also observed between men and women: valence ($r = .98$), action tendencies ($r = .95$), consequences for the trait holder ($r = .77$), consequences for others ($r = .89$), and emotions (all mean $rs > .82$). Given the high stability of the data, they were averaged across universities and gender for subsequent analyses.

Relationships Between Emotional Dimensions

An exploration of the relationships between the dimensions under study showed that these dimensions were highly inter-correlated (see Table 2). The analysis also revealed several points of interest. First, we observed a negative correlation between the level of anger conveyed by a trait and the tendency to approach a person possessing the trait ($r = -.82$), which argues against the theoretically expected positive relationship between anger and approach (e.g., Alexopoulos & Ric, 2007; Carver & Harmon-Jones, 2009; Frijda et al., 1989). Second, we found that linguistic dimensions such as trait frequency (as measured in either books or in movies’ subtitles) were positively correlated with several dimensions, namely with approach tendencies ($r = .11$ and .13, $ps < .02$, for books and subtitles, respectively) and happiness $rs = .09$ and .13, $ps < .04$, for books and subtitles, respectively). Valence was also significantly correlated with frequency as measured in movies’ subtitles ($r = .11, p < .02$). This correlation approached significance when the trait frequency was measured in books ($r = .08, p < .09$). Even though these correlations are modest, they again suggest that the ‘effects’ of linguistic dimensions, such as word frequency, can be partially accounted by emotionality, and that researchers should take into account this dimension in their analyses (e.g., Zajonc, 1968).

The Role of the Possessor- vs. Other-Relevance
Another point of interest concerns the moderating role of the possessor- vs. other-relevance dimension. We tested Wentura et al.’s (2000) predictions that action tendencies of approach and avoidance should be better predicted by valence when the traits are perceived to have consequences for those who interact with the trait-holder rather than when they have consequences for the trait-holder. To do so, we computed a multiple regression analysis having action tendencies associated with a trait as the criterion, and valence (VAL), consequences for the possessor of the trait (PCONS), consequences for others (OCONS), and the interactions between valence and both kind of consequences as predictors. As already observed in the correlation analysis, valence predicted approach tendencies, $B = 0.83, F(1, 518) = 8516, p < .001, \eta_p^2 = .94$. However, this relationship was moderated by the perceived consequences of the trait for the trait holder (PCONS), $B = -0.09, F(1, 518) = 32.47, p < .001, \eta_p^2 = .06$, as well as the consequences of the trait for others (OCONS), $B = 0.11, F(1, 518) = 167.14, p < .001, \eta_p^2 = .24$. Consistent with Wentura and colleagues’ predictions, the relationship between valence and behavioral tendencies increased as the trait is perceived as having more consequences for the person interacting with the trait holder, whereas this relationship became weaker as the trait was perceived as having more consequences for the trait holder. More generally, we observed that trait relevance moderates the relationships between the specific emotions conveyed by the trait and the behavioral tendencies (see Table 3). Taken together, these findings attest to the importance of this dimension in affective reactions toward, at least, other persons.

Valence – Emotion Relationships

Finally, we used the database to explore how valence was related to discrete emotions in trait evaluation. As we can see in Table 2, the five discrete emotions conveyed by a trait predicted its valence. However, partial correlations revealed that discrete emotions contribute in a different way to valence. The greatest contributions are for happiness, $B = 0.50, t(518) =$
Emotional norms for trait words - 12

18.09, $p < .001$, $\eta^2_p = .39$, and disgust, $B = -0.51$, $t(518) = 10.74$, $p < .001$, $\eta^2_p = .18$. Sadness, $B = -0.30$, $t(518) = 8.41$, $p < .001$, $\eta^2_p = .12$, anger, $B = -0.22$, $t(518) = 5.63$, $p < .001$, $\eta^2_p = .06$, and fear appeared to contribute in a weaker way, $B = -0.08$, $t(518) = 2.16$, $p < .04$, $\eta^2_p = .01$. These results suggest that the valence of a trait is best accounted for by the degree of happiness conveyed by that trait than by any other emotional dimension.

Discussion

The aim of the present ratings was to provide emotional norms for French trait-words. The number of normative studies of French lexicon is relatively limited and these studies generally restrict emotionality to valence (e.g., Bonin et al., 2003; Syssau & Monnier, 2009). Our study departs from this work by providing norms for discrete emotions for words. This could be particularly useful because researchers claim that this level of analysis should be more predictive of behavior than the dimensional accounts (e.g., Carver & Harmon-Jones, 2009; Panksepp, 1998). Even though there is no definite evidence in favor of one or the other conception, the availability of such normative data could contribute to the debate.

Our study also provides norms for other emotion-related dimensions, such as approach / avoidance and perceived consequences that have recently appeared to play a crucial role in research on emotions and on their consequences in perception, cognition, and action (e.g., Wentura & Degner, 2010; Wentura et al., 2000). Thus, these norms should be useful for researchers exploring the emotional dimensions through exposure to words. Of course, the database should be of particular interest for those who work on French lexicon, but it can serve also as a basis for linguistic comparisons as well as for exploration of the interplay between the various emotional dimensions.

Our results indicate that our data are stable. Moreover, we were able to replicate psychology literature findings, such as the relationship between word frequency and positivity
(e.g., Zajonc, 1968), measured here in terms of valence, happiness, and approach tendencies. We also replicated the moderating role of possessor- vs. other-relevance of trait on action tendencies (Wentura et al., 2000). Importantly, our data suggest that this dimension strongly moderates most of the relationship between emotion and approach tendencies and deserves more attention in emotion research.

Finally, we observed a negative correlation between the anger conveyed by a trait and the tendency to approach the trait holder. This correlation is consistent with dimensional views of emotion structure (e.g., Watson, Clark, & Tellegen, 1988) and can be perceived as being at odds with theoretical positions considering anger as an emotion related to approach behavior, with the aim of restoring a desired state (Carver & Harmon-Jones, 2009). However, it is also plausible that the kind of measurement we relied on, based on self-report, constrained the participants’ responses and made them rely on their lay theories concerning their own functioning (e.g., Feldman-Barrett, Robin, Pietromonaco, & Eysell, 1998). This issue is beyond the scope of this article, but it questions our reliance on self-report in normative data and calls for future research directly comparing self-report with other measures of the same constructs (e.g., chronometric studies). We hope that these normative data will contribute to further research by providing a quick and easy access to emotion-related material to researchers interested either in personality, emotion, impression formation, or automatic evaluation.
References

1. Surprise has not been included because it is sometimes considered as a neutral cognitive state (e.g., Ortony and Turner, 1990) and not as an emotion. As a result, surprise does not appear in some classifications of basic emotions (Oatley & Johnson-Laird, 1987; Ekman, 1999; Izard, 2009).

2. We completed this analysis by testing the quadratic relationship between word frequency and valence. The results of these multiple regression analyses (with word frequency as the criterion and valence as the predictor) reveal a linear trend for subtitles and for books, $B = 5.57, t(520) = 2.88, p < .01, \eta^2_p = .02$, and $B = 2.09, t(520) = 1.83, p < .07, \eta^2_p = .006$, respectively. The quadratic trend appears significant only when frequency was estimated from subtitles, $B = 3.48, t(520) = 1.99, p < .05, \eta^2_p = .008$. This trend is far from significant when frequency was estimated from books, $t < 1, p = .52$. Thus, taken together, our results would be more supportive of a linear than a quadratic relationship between word valence and word frequency.
<table>
<thead>
<tr>
<th>Trait</th>
<th>Translation</th>
<th>FqMovies</th>
<th>FqBooks</th>
<th>Val</th>
<th>PCONS</th>
<th>OCONS</th>
<th>App</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessible</td>
<td>Approachable</td>
<td>1.49</td>
<td>4.12</td>
<td>1.44 (1.09)</td>
<td>4.19 (1.61)</td>
<td>4.87 (1.79)</td>
<td>1.58 (0.96)</td>
</tr>
<tr>
<td>Accueillant</td>
<td>Welcoming</td>
<td>1.21</td>
<td>1.82</td>
<td>2.14 (0.81)</td>
<td>4.19 (1.72)</td>
<td>5.32 (1.75)</td>
<td>2.13 (0.92)</td>
</tr>
<tr>
<td>Actif</td>
<td>Active</td>
<td>4.12</td>
<td>3.58</td>
<td>1.9 (0.82)</td>
<td>5.00 (1.64)</td>
<td>3.70 (1.75)</td>
<td>1.71 (1.06)</td>
</tr>
<tr>
<td>Admirable</td>
<td>Admirable</td>
<td>6.02</td>
<td>23.92</td>
<td>2.19 (0.99)</td>
<td>4.48 (1.83)</td>
<td>4.78 (1.86)</td>
<td>1.72 (1.06)</td>
</tr>
<tr>
<td>Admiratif</td>
<td>Appreciative</td>
<td>0.26</td>
<td>2.57</td>
<td>0.80 (1.74)</td>
<td>4.88 (1.64)</td>
<td>4.01 (1.90)</td>
<td>1.08 (1.27)</td>
</tr>
<tr>
<td>Adorable</td>
<td>Adorable</td>
<td>23.00</td>
<td>6.28</td>
<td>2.14 (0.94)</td>
<td>4.03 (1.82)</td>
<td>5.09 (1.77)</td>
<td>2.04 (0.97)</td>
</tr>
<tr>
<td>(…) Vigilant</td>
<td>Mindful</td>
<td>1.73</td>
<td>1.82</td>
<td>1.44 (0.93)</td>
<td>4.83 (1.80)</td>
<td>3.80 (1.83)</td>
<td>1.06 (1.09)</td>
</tr>
<tr>
<td>Vigoureux</td>
<td>Vigorous</td>
<td>2.05</td>
<td>6.35</td>
<td>1.4 (1.09)</td>
<td>4.65 (1.75)</td>
<td>3.28 (1.74)</td>
<td>1.20 (1.03)</td>
</tr>
<tr>
<td>Violent</td>
<td>Violent</td>
<td>12.84</td>
<td>19.39</td>
<td>-2.46 (0.93)</td>
<td>5.91 (1.26)</td>
<td>6.43 (0.89)</td>
<td>-2.35 (0.99)</td>
</tr>
<tr>
<td>Vivace</td>
<td>Vivacious</td>
<td>0.35</td>
<td>3.58</td>
<td>1.38 (0.89)</td>
<td>4.61 (1.63)</td>
<td>3.53 (1.75)</td>
<td>1.05 (1.12)</td>
</tr>
<tr>
<td>Vivant</td>
<td>Lively</td>
<td>76.38</td>
<td>41.15</td>
<td>2.10 (0.96)</td>
<td>4.78 (1.99)</td>
<td>4.09 (2.05)</td>
<td>2.05 (0.90)</td>
</tr>
<tr>
<td>Vulgaire</td>
<td>Vulgar</td>
<td>8.48</td>
<td>12.84</td>
<td>-2.04 (1.12)</td>
<td>5.40 (1.41)</td>
<td>5.82 (1.45)</td>
<td>-1.57 (1.42)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Trait</th>
<th>Translation</th>
<th>Anger</th>
<th>Disgust</th>
<th>Happiness</th>
<th>Fear</th>
<th>Sadness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessible</td>
<td>Approachable</td>
<td>1.13 (0.47)</td>
<td>1.18 (0.62)</td>
<td>2.86 (2.06)</td>
<td>1.25 (0.76)</td>
<td>1.05 (0.22)</td>
</tr>
<tr>
<td>Accueillant</td>
<td>Welcoming</td>
<td>1.03 (0.23)</td>
<td>1.08 (0.68)</td>
<td>4.87 (1.81)</td>
<td>1.11 (0.48)</td>
<td>1.03 (0.16)</td>
</tr>
<tr>
<td>Actif</td>
<td>Active</td>
<td>1.22 (0.61)</td>
<td>1.09 (0.43)</td>
<td>3.59 (2.06)</td>
<td>1.27 (0.73)</td>
<td>1.14 (0.61)</td>
</tr>
<tr>
<td>Admirable</td>
<td>Admirable</td>
<td>1.14 (0.47)</td>
<td>1.08 (0.35)</td>
<td>4.38 (2.11)</td>
<td>1.16 (0.65)</td>
<td>1.06 (0.33)</td>
</tr>
<tr>
<td>Admiratif</td>
<td>Appreciative</td>
<td>1.14 (0.47)</td>
<td>1.10 (0.34)</td>
<td>3.58 (2.03)</td>
<td>1.29 (0.91)</td>
<td>1.21 (0.81)</td>
</tr>
<tr>
<td>Adorable</td>
<td>Adorable</td>
<td>1.06 (0.46)</td>
<td>1.08 (0.38)</td>
<td>5.01 (1.89)</td>
<td>1.15 (0.56)</td>
<td>1.06 (0.40)</td>
</tr>
<tr>
<td>(…)</td>
<td>Mindful</td>
<td>1.15 (0.58)</td>
<td>1.78 (0.73)</td>
<td>2.17 (1.65)</td>
<td>2.22 (0.86)</td>
<td>1.22 (0.71)</td>
</tr>
<tr>
<td>Vigoureux</td>
<td>Vigorous</td>
<td>1.29 (0.93)</td>
<td>1.10 (0.44)</td>
<td>2.74 (1.99)</td>
<td>1.40 (1.11)</td>
<td>1.13 (0.57)</td>
</tr>
<tr>
<td>Violent</td>
<td>Violent</td>
<td>6.08 (1.38)</td>
<td>4.06 (2.38)</td>
<td>1.05 (0.22)</td>
<td>4.12 (2.53)</td>
<td>2.88 (2.40)</td>
</tr>
<tr>
<td>Vivace</td>
<td>Vivacious</td>
<td>1.32 (0.82)</td>
<td>1.12 (0.46)</td>
<td>2.95 (2.08)</td>
<td>1.34 (0.99)</td>
<td>1.22 (0.88)</td>
</tr>
<tr>
<td>Vivant</td>
<td>Lively</td>
<td>1.54 (1.34)</td>
<td>1.42 ‘1.22)</td>
<td>4.51 (2.20)</td>
<td>1.76 (1.55)</td>
<td>1.64 (1.42)</td>
</tr>
<tr>
<td>Vulgaire</td>
<td>Vulgar</td>
<td>4.04 (2.34)</td>
<td>4.83 (1.90)</td>
<td>1.06 (0.34)</td>
<td>1.82 (1.62)</td>
<td>2.36 (2.16)</td>
</tr>
</tbody>
</table>

Table 1. Presentation of the Main Measures Included in the Database for the First Six and the Last Six Trait Words. FqMov = Frequency in movie subtitles; FqBook = Frequency in books; Val = Valence; PCONS = Perceived consequences for the possessor; OCONS = Perceived consequences for others). Standard deviations within brackets.
Table 2. Pearson’s Correlation Between the Measures

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Frequency (books) /</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Valence</td>
<td>.08</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PCONS</td>
<td>-.01</td>
<td>-.42**</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. OCONS</td>
<td>-.07</td>
<td>-.39**</td>
<td>.29**</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Approach</td>
<td>.11*</td>
<td>.97**</td>
<td>-.38**</td>
<td>-.39**</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Anger</td>
<td>-.06</td>
<td>-.81**</td>
<td>.46**</td>
<td>.58**</td>
<td>-.82**</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Disgust</td>
<td>-.05</td>
<td>-.83**</td>
<td>.38**</td>
<td>.53**</td>
<td>-.84**</td>
<td>.85**</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Happiness</td>
<td>.09*</td>
<td>.84**</td>
<td>-.30**</td>
<td>-.11*</td>
<td>.84**</td>
<td>-.64**</td>
<td>-.64**</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>9. Fear</td>
<td>-.01</td>
<td>-.62**</td>
<td>.52**</td>
<td>.24**</td>
<td>-.57**</td>
<td>.52**</td>
<td>.46**</td>
<td>-.58**</td>
<td>/</td>
</tr>
</tbody>
</table>
| 10. Sadness| .08*| -.71**| .47**| .19**| -.64**| .54**| .56**| -.61**| .62**| /

Note: * p < .05, ** p < .01.
<table>
<thead>
<tr>
<th>Emotion</th>
<th>PCONS</th>
<th>OCONS</th>
<th>Emotion</th>
<th>Emotion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x PCONS</td>
<td>x OCONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anger</td>
<td>-1.25**</td>
<td>10.05</td>
<td>0.24**</td>
<td>0.31**</td>
</tr>
<tr>
<td>Disgust</td>
<td>-1.41**</td>
<td>-0.14*</td>
<td>0.14**</td>
<td>0.30**</td>
</tr>
<tr>
<td>Fear</td>
<td>-1.06**</td>
<td>-0.08</td>
<td>-0.32**</td>
<td>0.59**</td>
</tr>
<tr>
<td>Happiness</td>
<td>0.83**</td>
<td>-0.09</td>
<td>-0.38**</td>
<td>0.05</td>
</tr>
<tr>
<td>Sadness</td>
<td>-1.02**</td>
<td>-0.16</td>
<td>-0.30**</td>
<td>0.47**</td>
</tr>
</tbody>
</table>

Note: ** \(p < .01 \), * \(p < .05 \)

Table 3. Behavioral Tendencies (Approach) as Predicted by Emotion Conveyed by the Trait and Consequences for the Trait Holder (PCONS) and for Others (OCONS). Values are unstandardized regression coefficients.